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Abstract. Probability distributions of fluctuations of atomic positions amund scattering vector 
dependent reference lattice points have teen calculated for various crystalline and quasicrystalline 
smctures. and their intiuence on the diffraction panem has teen discussed. For incommensurate 
SeaDering vectQrs flat fluctuation distributions are found, which change drastically when the 
scattering vector approaches the diiiiaction peak position. Moments of these distributions have 
teen used to calculate the diffraction payem. Limitations of the Lkbye-Waller approximation 
are discussed and a new more accurate method of peak intensity estimation is propsed and 
tested for real space and phason space fluctuations. 

1. Introduction 

It is well known that spatial fluctuations have great influence on diffraction patterns. 
Whenever the atomic positions fluctuate around lattice points the Bragg peak intensities 
decrease and their reductions are commonly approximated by the Debye-Waller factor. 
Usually, these fluctuations are thermally excited and they are time dependent. To calculate 
the DebyeWaller correction one has to know the mean square value of the atomic 
displacements from the lattice positions. There are many structures, such as quasicrystals, 
random stmctures and microtwins (Wolny and Pytlik 1991). which are not periodic so no 
lanice exists. However, even for those structum fluctuations can be calculated. For this 
purpose a scattering vector dependent reference lattice (Wolny and Pytlik 1991, Wolny 
1992) has been defined. The period of this lattice is equal to the wavelength corresponding 
to the actual scattering vector. The distribution of the shortest distances (described by the 
variable U )  between atomic positions and the reference lattice points fully determines the 
intensity of the diffraction pattern. As was shown in the previously mentioned papers only 
the first few moments of this distribution are important for diffraction pattern calculation. 
In that case the static approximation, normalized to N 2  intensity of the diffraction pattern, 
is given by the formula (Wolny and Pytlik 1991) 

(1) 

where I is the diffraction pattern intensity, k is the length of the scattering vector, N the 
number of atoms, (U'") is the mth moment of U 

I ( k ) / N 2  = ( I  - k2(u2)/2! + k2(u4)/4! - .. .)' + @(U) - k3(u3) /3!  + . . .)' 
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and f is an atomic form factor. Both ( u m )  and U. are scattering vector dependent. 
The reference lattice can be shifted with respect to the real structure and for a cemin 

value of the shift the second term of equation (1) becomes zero (Wolny 1992). This means 
that the imaginary part of the structure factor vanishes and the second moment of variable 
U is the dominating one. For this particular shift the diffraction pattem can be calculated 
by an approximation of formula ( I )  which looks similar to the well known Debye-Waller 
factor 

J / N ~  = exp(-kz(u2)). (3) 

Usually, the Debye-Waller factor describes only the reduction of peak intensities caused 
by thermal vibrations of atoms, and the second moment of U does not depend on the 
scattering vector. Recently (Jarit 1986, Tang and JariC 1990, Henley 1991, Wolny and 
Pytlik 1992), this factor written in phason space was used to estimate peak intensities for 
static quasicrystals. Using formula (3) with the scattering vector dependent second moment 
of U, after an appropriate shift of the reference lattice, one can calculate the full diffraction 
pattern, not only estimate the peak intensity reduction. However, one should remember that 
equation (3) is only an approximation of the strictly valid equation (1) and the error of this 
approximation increases with decreasing value of peak intensities. 

It is clear from the above that the probability distributions of variable U are fundamental 
for the shape of the diffraction pattern. In this paper several such distributions for different 
crystalline and quasicrystalline structures are discussed. Diffraction patterns have been 
calculated for two-dimensional structures only; however, similar results are obtained for the 
real three-dimensional structures. 

2. Definition of structures 

n o  different types of structure have been chosen for further calculations. The first 
type are periodic two-dimensional structures, based on a hexagonal lattice, with random 
displacements of atoms from the periodic positions. The orientation of the displacements 
is random and their absolute values are given by a Gaussian distribution with standard 
deviation (parameter sigma) equal to 0.15 (figure I(a)) or 0.5 (figure I@))  in units of the 
lattice vector. For simplicity the value of the lattice vector was chosen as unity. If, after 
these random displacements, the distance between two atoms was less than 0.3 one of them 
was removed. By this procedure the mean concentration of atoms decreased with increasing 
value of displacements. resulting in various more or less disordered structures. For small 
displacements (figure I(Q)) periodic lines of atoms are easily observed; however, higher 
values of random displacements (figure l(b)) completely destroy that periodicity and the 
obtained structures are reminiscent of an amorphous structure rather than a aystalline one. 

The second type, a quasicrystalline structure, was a two-dimensional tiling obtained by 
applying an inflation method to Robinson triangles (Wolny and Pytlik 1991). The atomic 
positions of such a perfectly ordered quasicrystalline structure (figure 2(a)) were subject 
to similar random displacements as discussed above but with the standard deviation of the 
Gaussian distribution equal to 0.15 (figure 2(b)). 

3. Diffraction patterns 

Diffraction patterns of the hexagonal smctures calculated along the y direction (i.e. for 
kl = 0) are shown in figures 3 and 4 for different values of introduced displacements and 
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(a )  

Figure I. Hexagonal sWctum with different displacemen& of aloms from the lattice positions. 
The orientations of the displacements are random and their values are given by Gaussian 
distributions with the standard deviations (parameter sigma of the dis~bution) equal to 0.15 (0 )  

and 0.5 (b). The value of the lattice vector is unity. 

Figure 2. Quasicrystalline smcfures oblained by applying an inRation method to Robinson 
triangles: (0 )  perfect quasicrystal, (b) quasicrystal with random displacement of atoms given by 
a Gaussian distribution with the standard deviation equal lo 0.15. 

two different sizes of the structures used for calculations. For a structure with a small value 
of atomic displacements (figure 3) the diffraction patterns are dominated by Bragg peaks for 
both radii (i.e. R = 5 or 40) of the structure. The intensities of these peaks decrease with 
increasing value of scattering vector which can be described in the first approximation by the 
Debye-Waller factor (broken curve) for the mean square displacements from the periodic 
positions. Unfortunately, for higher values of scattering vector this approach fails and the 
peak intensities are much higher than those predicted by the Debye-Waller approximation. 
However, the accuracy of peak intensity estimation can be improved by using equation (1) 
written for the moments of U calculated in a special way. In this approach the moments 
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of the variable U, which in general depend on the scattering vector, are approximated by 
constant values, calculated for the scattering vector, corresponding to the first Bragg peak. 
These particular values of the moments are used to estimate all the other diffraction peak 
intensities along the same direction as the scattering vcctor. The results of this approach 
have been shown in figures 3 and 4 by dotted curves. From these figures one can easily 
notice that the discussed approximation estimates quite well the most intensive Bragg peaks, 
much better than can be obtained from the Debye-Waller formula. The diffraction pattem 
(figure 4) of the more disordered structure consists only of very weak peaks with intensities 
that would not be described by the Debye-Waller formula The use of higher moments 
allows correct estimation of Bragg peaks even though the dotted curve obtained looks very 
unusual. 

0.4 R=5 

y... \'.. 

N z 
L 

0.0 

5 10 15 20 25 5 10 15 20 25 

kY kY 
Flgure 3. Diffraction pattems obtained by Fourier 
transformation of the swclllre presented in figure I(=) 
(n = 0.15) and calculated alo?g the direction (k, = 
0) for two radii of the swcture: (U)  R = 5 and (b) R = 
40. The broken CUNS describe the p k  intensities 
calculated in the Debye-Waller approximafion, and b e  
dotted curves those calculated by appropriate use of 
equation ( I )  for fluctuations calculated for the scattering 
vector describing the firs1 Bragg peak position. 

Figure 4. Diffraction paltem obtained from Fourier 
transformation of the suucture presenled in figure I(b) 
(a = 0.5) for two different radii of the structure: (U) 
R = 5 and (b)  R = 40. The M e n  and dolled curves 
have been calculated in a similar way as in figure 3. 

The maximum intensities of observed Bragg peaks normalized to N 2  do not depend 
on the size of the strucmre and/or number of atoms tAen into account in the calculation. 
The above is true only for samples which are large enough to suppress the concentration 
fluctuations. The full width at half maximum (FWHM) of the peaks decreases continuously 
with increasing radius of the structure, similarly to what is observed for perfect crystals. A 
linear plot of FWHM versus the reciprocal of the structure dimension is obtained. Diffuse 
scattering easily observed in the diffraction pattem for R = 5 is hardly noticed for R = 40. 
This type of scattering scales as N and for higher numbers of atoms its contribution to 
the diffraction pattem compared to the Bragg peaks decreases. The diffuse scattering is 
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especially significant for structures with higher values of atomic displacements (figure 4) .  
For smaller radius (e.g. R = 5) the diffuse peaks are as strong as the Bragg ones; however, 
when the radius of the structure increases the Bragg peaks start to dominate in the diffraction 
pattern. 

The diffraction pattern of the quasicrystalline structure (figure 5(a)) was discussed in the 
previous paper (Wolny and Pytlik 1991) both in real space and phason space. It was shown 
(see also JariC 1986) that the diffraction pattern is aperiodic in a linear scale of scattering 
vector but can be divided into a periodic series of peaks in a logarithmic scale of scattering 
vector (with a period equal to In(?)), such that 

k, = ko?" ( 4 4  

and 

kff" = ko(-r)-n ( n = O , 1 , 2 , 3  ,... ) (4b) 

where kr" is a perpendicular space (perp-space or phason space) component of the 
scattering vector, ko is a constant and T is an irrational number equal to about 1.618. 
The first three series of peaks calculated along the y direction for structures built up with 
Robinson triangles are described by ko zz 2.9545, 5.9091 or 6.6065. An increase of peak 
intensities belonging to the same series with increasing value of scattering vector is observed 
and can be described analytically by the Debye-Waller factor in phason space (Wolny and 
Pytlik 1991). In this approach the intensities of diffraction peaks belonging to the same 
series can be described by the formula 

I (k , ) /Nz  = e~p[-(ko)~(h ' ) / (k~)~l  (5) 

where (hz )  is a mean square value of phason fluctuations. The broken curves shown in 
figure 5 have been calculated according to (5) for the three different values of ko given above. 
In a similar way to real-space fluctuations the Debye-Waller approximation in phason space 
fails for lower-intensity diffraction peaks. This means that higher-order moments of phason 
fluctuations cannot be neglected for these peaks. Equation (I)  written for phason fluctuations 
is 

I(ky)/N2 = ( I  - g ( h 2 ) / ( 2 ! k : )  + ki(h4)/(4!k:)  - . . .)' 
-I- ( G ( h } / k y  - k: (h3) / (3!k3  + . . .)* 

and this has  been plotted in figure 5 as dotted curves for appropriate values of ko. The 
moments of the phason fluctuations were calculated for a given structure as described 
by Wolny and Pytlik (1991). In principle, only even moments have been used and the 
contribution of odd moments has been neglected. It can be seen from figure 5 that formula 
(6) essentially improves the approximation of peak intensities, especially the weakest peaks 
at higher values of scattering vector. 

The diffraction pattern of the quasicrystalline structure with random displacement of 
atoms is shown in figure 5(b).  Bragg peaks appear for the same scattering vector as given 
by (4); however, their intensities are governed, in the first approximation, by a product of 
two Debye-Waller factors (broken curve): one in phason space (5) and the other written for 
random displacements of atoms from ideal quasicrystalline positions in real space (equation 
(3) written for the second moment of these displacements). The Debye-Waller factor written 
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in phason space increases the intensities of the diffraction peaks belonging to the same series 
with increasing value of scattering vector (similar to the case for perfect quasicrystals). On 
the other hand the Debye-Waller factor written for random displacements in real space 
reduces the peak intensities with increasing value of scattering vector. As a final result of 
these two factors, peak intensities belonging to the same series pass through a maximum 
for a certain scattering vector as observed in figure 5(b). Also in this case the higher-order 
moments of fluctuations in both spaces, real and phason, are essential for Bragg peaks with 
small intensities. The peaks are much better described by the dotted curves which have 
been calculated as a product of equations ( I )  and (6) written for the moments of the real- 
space displacements from the ideal quasicrystalline positions and the appropriate moments 
of perp-space fluctuations. 

4. Probability distributions OF fluctuations 

Probability distributions of fluctuations of atomic positions around the points of the reference 
lattice depend on scattering vector. The range of the variable U describing the fluctuations is 
from -A/2 to +A/2, where A is the wavelength for the wave vector k (A = 2R/k ) .  In units 
of A all the fluctuations are bounded to the range from -0.5 to 0.5 and the Debye-Waller 
type formula (3) can be written as 

When fluctuations are given in units of A the intensity of the diffraction pattern calculated by 
(7) depends only on the second moment of the probability distribution of this new variable, 
and explicit dependence on the scattering vector vanishes. The above applies not only to 
the Debye-Waller type factor but also to formula (1) written for the related variable ( u / A )  

Equation (8) means that the full diffraction pattem can be calculated from the probability 
distributions of this new variable. In principle, only the first few moments of these 
distributions are important an4 as has been discussed above, for the Debye-Waller 
approximation preceded by an appropriate shift of the reference lattice, only the second 
moment is used for dif€raction pattern calculation. For uniform distribution (i.e. when 
P ( u / A )  is a'constant qual to unity) the value of the second moment is equal to & 
and according to (7) the intensity of the diffraction pattern is about 0.037. This value 
estimates the background of the diffraction pattem calculated according to the Debye- 
Waller approximation (Wolny 1992). Several probability distributions calculated for the 
hexagonal structure with small displacements of atoms from their periodic positions are 
shown in figure 6 for different values of the scattering vector along the y direction, with 
k ,  = 0. For a scattering vector corresponding to the position of the first diffraction peak (i.e. 
k = k,  = 2n/ sin(nl3) N 7.26) the probability distribution of related fluctuations @/A) is 
an almost symmetrical function having a maximum at the zero value of the fluctuations. 
The distribution is rather sharp with a small value of the second moment which, according 
to (7), corresponds to relatively high diffraction peak intensity. For the next peaks the 
distributions become broader and the second moment increases, which reduces the diffraction 
peak intensities. For perfect crystalline structures (i.e. without any atomic displacements), 
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FIgure 5. Diffraction paaernS calculated along the y direction for the quasicrystalline smctum 
shown in figure 2 (a) perfect quasicrystal, ( b )  quasicrystal with random displacement of alms. 
The radius of the smcture was equal to 20. The broken curves represent a product of hvo 
Debye-Waller factors calculated in real spaEe and phason space. The dotted cwes have been 
calculated as a product of two equations: (1) (for frozen phonons) and (6) (for frozen phasonst- 
see texr 

with a primitive unit cell, the fluctuation distributions calculated for scattering vectom at 
diffraction peak positions are delta functions with the second moment equal to zero. This 
gives the diffraction pattem normalized to NZ with all peak intensities equal to unity. 

For scattering vectors which are incommensurate with the reciprocal lattice of the 
structure the probability distributions are constant and equal to unity. When the scattering 
vector approaches commensurate values the distribution fluctuations start to oscillate 
(figure 6(b)). For example, if the scattering vector is half of the reciprocal lattice vector the 
discussed distribution function has two maxima. In figure 6(b) these maxima (full m e )  
occur for u/h corresponding to 0 and 0.5 respectively (the value -0.5 of related fluctuations 
is symmetry equivalent to 0.5). In general, if the scattering vector k is commensurate with 
the reciprocal vector ko with the relation k = k o / n ,  the disbibution function has n maxima 
Usually, for such scattering vectors and a Debye-Waller type approximation (3), one has to 
shift the reference lattice appropriately (Wolny 1992) to decrease the higher-order moment 
contribution to the diffraction pattem. However, even then a weak artificial peak is observed 
in the calculated diffraction pattem for k = ko/2, with a maximum intensity of about 8% 
of the corresponding peak at k = ko. The intensities of higher-order peaks (k = b/n, with 
n = 3,4,5, . . .) can be neglected. These artificial peaks are present in diffraction patterns 
calculated according to formula (3). but they do not appear if only higher-order moments 
are considered (equation (I)). 

For the hexagonal structure with a higher value of atomic displacements (figure I@)) 
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- (n=!) k=k,n 
(n=2) 
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/ . -  
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Figure 6. Probability distributions of reduced Rucruations (U /&)  far the hexagonal sbucture 
with small deviations from lattice positions (figure I(o)). Calculations have been performed for 
scattering vectors corresponding to ( a )  the first. second and fourth +s observed in diffraction 
panems (figure 2). and ( b )  some m i o d  fractions (0.5.0.25, and 0.1 I1 of the value of ule first 
diffmction peak. 

the probability distributions shown in figure 7 are similar to that presented in figure 6@). 
However, the distributions are much broader, which corresponds to the higher values of 
the second moments and lower diffraction peak intensities. In principle, for such broad 
distributions the Debye-Waller type formula (3) gives the correct value of peak position but 
an incorrect value of the peak intensity (see also the discussion in the previous section). The 
corrections originating from higher moments are as important as the value of the second 
moment itself and to calculate the diffraction pattern the full series expansion (formula (1)) 
should be used. 

For perfect quasicrystals the probability distributions of fluctuations around points of the 
reference lattice behave differently than previously discussed. Distributions corresponding 
to the first series of diffraction peaks described by (4) are shown both for the perfect 
quasicrystal (figure 8(a)) and the quasicrystalline structure with random displacements of 
atoms (figure 8(b)). These diffraction peak intensities increase with increasing value of 
scattering vector, which is connected with the narrowing of the appropriate distributions of 
fluctuations (in real space). When the value of the scattering vector approaches infinity the 
distributions corresponding to scattering vectors given by (4) become a delta function and 
the intensities of the appropriate diffraction peaks are equal to unity. The same behaviour of 
diffraction peaks is also observed for other tilings (twins, random or precipitated, see Wolny 
and Pytlik 1991); however, for these structures probability distributions of fluctuations as 
well as peak intensities depend on the number of scattering atoms and/or the size of the 
structure. 
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-0.4 -0.2 0.0 0.2 0.4 
u / h  

Figure 7. Probability distributions of reduced RucN- 
dons  (u /h)  for the hexagonal svUcUue shown in fig 
we l (b)  (a  = 0.5) calculated for scattering vecIors 
corresponding lo the first three dimaction peaks. 

k,-2.955 
.......... (.=1) 

-0.4 -0.2 0.0 0 , 2  0.4 

u / h  
Figure 8. Probability disltibutions of reduced RucU- 
alions (u/A) calculated for the first Snies of peaks of 
quasicrystalline structures: (a) the perfect quasirrystal 
shown in figure Xo): (b)  the quasirrystal with random 
displacemenrs of atoms from figure Z(b). 

5. Summary 

The intensity of the diffraction pattem depends on the moments of the probability 
distributions of the variable @/A), which describes the related shortest distance between 
atomic positions and points of the reference lattice. Several such distributions have 
been calculated for two-dimensional stmctures: hexagonal and quasicrystalline ones. For 
the hexagonal structure the positions of atoms have been subject to some additional 
displacements from their lattice points. These random displacements reduce the intensity 
of Bragg peaks (in the first approximation according to the Debye-Waller type formula) 
and increase the contribution of diffuse scattering. Different scaling with number of atoms 
separates these two components of the diffraction pattem. For a high enough number of 
atoms the Bragg peaks dominate in the diffraction pattem even for a disordered structure 
such as that shown in figure I@). Probability distributions of fluctuations around the 
points of the reference lattice have been calculated for different values of scattering vector. 
Whenever the scattering vector describes the position of any peak in the diffraction pattern, 
the corresponding distribution of reduced fluctuations ( u p )  has a maximum, which goes to 
infinity as the value of the diffraction peak intensity approaches unity. For lower-intensity 
diffraction peaks the corresponding distributions become broader. When the scattering 
vector is incommensurate to any vectors describing diffraction peak positions, the probability 
distribution is a flat function of ( u / A )  with the value of the second moments equal to A. 
According to (7) this gives a diffraction intensity equal to about 0.037, which is the value 
of the background in the Debye-Waller type approximation. For a commensurate value of 
the scattering vector several maxima can be observed in the fluctuation distributions. For 
example, when the scattering vector is half of the diffraction peak vector, one obtains a 
two-state distribution. In this case, the Debye-Waller type formula can be used after an 
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appropriate shift of the reference lattice. However, even then a weak artificial peak is still 
left in the calculated diffraction pattern. 

Diffraction peaks of quasicrystals are also strictly connected with the distributions of 
spatial fluctuations around reference lattice points. For the series of peaks given by (4) 
the corresponding fluctuation distributions become sharper for higher values of scattering 
vector. This gives an increasing value of the higher-order diffraction peak intensities in 
the same series. Diffraction patterns of quasicrystals can also be calculated using the 
Debye-Waller approximation to fluctuations of perpendicular space components. However, 
in this approach only maxima of diffraction peak intensities can be estimated in the limit of 
validity of the Debye-Waller approximation. For the quasicrystalline structure with random 
displacement of atoms, diffraction peak intensities can be estimated by a product of two 
Debye-Waller factors calculated in perpendicular (phason) and real spaces. 

It has been shown that the Debye-Waller approximation in phason space gives incorrect 
results for lower-intensity peaks, especially at higher values of scattering vector. For these 
peaks higher-order moments of fluctuation distribution are not negligible and should be taken 
into account by using formula (1). This formula can be modified to also include phason 
fluctuations and quite satisfactory results have been obtained for the perfect quasicrystalline 
structure (i.e. with only phason distribution) as well as for the quasicrystalline structure with 
random displacement of atoms (i.e. with frozen distributions of phasons and phonons). 
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